On the Relative Strength of Two Absolute Summability Methods

نویسنده

  • Andrew M. Bruckner
چکیده

In this paper we prove a theorem concerning the relative strength of \R,P„\k and \R,qn\k summability methods, k > 1 , that generalizes a result of Bosanquet [1].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On absolute generalized Norlund summability of double orthogonal series

In the paper [Y. Okuyama, {it On the absolute generalized N"{o}rlund summability of orthogonal series},Tamkang J. Math. Vol. 33, No. 2, (2002), 161-165] the author has found some sufficient conditions under which an orthogonal seriesis summable $|N,p,q|$ almost everywhere. These conditions are expressed in terms of coefficients of the series. It is the purpose ofthis paper to extend this result...

متن کامل

Inclusion Theorems for Absolute Summability Methods

In this paper we have proved two theorems concerning an inclusion between two absolute summability methods by using any absolute summability factor.

متن کامل

A Generalization Theorem Covering Many Absolute Summability Methods

A general theorem concerning many absolute summability methods is proved. 2000 Mathematics Subject Classification. 40F05, 40G05, 40D15, 40D25.

متن کامل

On Absolute Matrix Summability Methods

We have proved a theorem on |T, p n | k summability methods. This theorem includes a known theorem.

متن کامل

A note on generalized absolute Cesàro summability

In this paper, a known theorem dealing with | C, 1 |k summability methods has been generalized under weaker conditions for | C, α, β ; δ |k summability methods. Some new results have also been obtained. AMS subject classifications: 40D15, 40F05, 40G99

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010